1-5818-8

NASA EARTH-TO-ORBIT PROPULSION R&T

R.J. Richmond NASA/MSFC Sept. 13, 1988

8N

PURPOSE:

- o PROVIDE A VALIDATED TECHNOLOGY BASE TO SUPPORT A RANGE OF PROPULSION SYSTEM OPTIONS FOR MINIMUM LIFE CYCLE COST FUTURE SPACE TRANSPORTATION SYSTEMS
- O MAINTAIN AND ENHANCE U.S. LEADERSHIP IN SPACE TRANSPORTATION

IMPLEMENTATION:

o EARTH-TO-ORBIT PROPULSION R&T IS COMPOSED OF THREE PROGRAM ELEMENTS

R &T BASE PROGRAM

- Fundamental Processes
- New Concepts
- Far Term

CSTI

- o EARTH-TO-ORBIT PROPULSION
 - Oxygen/Hydrogen
 - Oxygen/Hydrocarbon

o BOOSTER TECHNOLOGY

- Pressure-Fed Liquids
- Hybrids

BASE R&T PROGRAM

OBJECTIVE:

- O EXPAND FUNDAMENTAL KNOWLEDGE AND UNDERSTANDING OF ROCKET ENGINE PROCESSES AND PRINCIPLES
- EXPLORE AND DEFINE ADVANCED TECHNOLOGIES APPLICABLE TO EARTH-TO-ORBIT PROPULSION

JUSTIFICATION:

181

O APPLICATION OF NEW CONCEPTS AND IMPROVED UNDERSTANDING OF THE FUNDAMENTALS HOLDS THE POTENTIAL FOR MAJOR ADVANCEMENTS IN ETO PROPULSION

SIGNIFICANCE:

o WILL ENABLE THE DEVELOPMENT OF FUTURE LAUNCH VEHICLES WITH FAR GREATER PAYLOAD DELIVERY CAPABILITY AT GREATLY REDUCED COST

BASE R&T PROGRAM

PROGRAM CONTENT:

- o FUNDAMENTALS OF COMBUSTION AND FLUID FLOW PROCESSES
- **o VERY HIGH MIXTURE RATIO COMBUSTORS**
- o METALLIZED GELLED PROPELLANTS
- o APPLICATIONS OF SUPERCONDUCTIVITY

CSTI EARTH-TO-ORBIT

OBJECTIVE:

o PROVIDE AN EXPANDED VALIDATED TECHNOLOGY BASE FOR ADVANCED OXYGEN/HYDROGEN AND OXYGEN HYDROCARBON ETO PROPULSION SYSTEMS

JUSTIFICATION:

- o INCREASED BENEFITS TO SPACE TRANSPORTATION SYSTEMS THROUGH ADVANCEMENTS IN ETO PROPULSION SYSTEMS
 - PERFORMANCE
 - SERVICE LIFE
 - AUTOMATED OPERATIONS AND DIAGNOSTICS

SIGNIFICANCE:

O WILL ENABLE A RANGE OF PROPULSION SYSTEM OPTIONS FOR MINIMIZING OVERALL SPACE TRANSPORTATION COSTS

PREBURNER/GAS GEN _

- UNIFORM TEMPERATURE TURBINE DRIVE GAS
- CARBON DEPOSITION

THRUST CHAMBER -

- COMBUSTION EFFICIENCY
- COMBUSTION STABILITY
- PERFORMANCE PREDICTION
- CARBON DEPOSITION
- THERMAL BARRIER COATINGS
- FUEL COKING
- FUEL COOLANT/CHAMBER LINER COMPATIBILITY
- LOX COOLING
- COOLING PASSAGE GEOMETRY OPTIMIZATION
- TRANSLATING NOZZLE

- BEARING DURABILITY
- ROTOR DYNAMICS
- AEROTHERMO LOADS
- COOLED TURBINES
- TURBINE BLADE DURABILITY
- HYDROGEN EMBRITTLEMENT
- TURBINE & PUMP SECTION EFFICIENCY

CONTROLS & SYSTEM MONITORING

- ADVANCED SENSORS
- DIAGNOSTIC TECHNIQUES
- CONTROL STRATEGY

CSTI EARTH-TO-ORBIT Program Content

o ANALYTICAL/EMPIRICAL MODELS

PERFORMANCE AND LIFE PREDICTION

- Flow Process Codes
- Combustion Codes
- Heat Transfer and Cooling
- Loads Definition
- Materials Behavior
- Structural Response
- Fatigue and Fracture

o ADVANCED COMPONENT TECHNOLOGY

METHODOLOGIES AND PROCESSES

- Bearings
- Seals
- Turbine Blades
- Active Dampers
- Materials
- Coatings
- Manufacturing

CSTI EARTH-TO-ORBIT

Program Content (Cont'd)

o INSTRUMENTATION

SYSTEM MONITORING AND CONTROL

- Performance Analysis
- Engine Control
- Safety Monitoring
- Condition Monitoring

o ENGINEERING TESTING

SUBCOMPONENT VALIDATION

- Models and Codes
- Materials
- Processes
- Instruments

o SUBSYSTEM/TESTBED ENGINE TESTING

TRUE ROCKET OPERATING ENVIRONMENT VERIFCATION

- Steady State
- Transient
- All Influences and Interactions Present

CSTI EARTH-TO-ORBIT MAJOR DELIVERABLES

o VALIDATED ANALYTICAL CODES:

- Enhanced Structural Dynamics Codes for Internal Force Definition
- Enhanced Life Prediction Codes Based on Fracture, Fatigue
- Enhanced Rotordynamics Codes
- Enhanced Engine Performance Prediction/Combustion Codes

o ADVANCED DESIGN METHODOLOGY FOR:

- High Efficiency, Long Life Turbines, Pumps, Bearings, and Ducts
- Combustor Stability and Cooling
- Turbomachinery Stability
- Safety Monitoring, Condition Monitoring, and Control Systems

CSTI BOOSTER PROPUSLION

OBJECTIVE:

- O DEVELOP THE VALIDATED DATA BASE AND DESIGN METHODOLOGY FOR ADVANCED BOOSTER PROPULSION SYSTEMS
 - HIGH THRUST
 - OXYGEN/HYDROCARBON PRESSURE-FED LIQUIDS
 - OXYGEN/SOLID FUEL HYBRIDS

JUSTIFICATION:

o PRESSURE-FED AND HYBRID PROPULSION HAVE INCREASED PERFORMANCE, THRUST TERMINATION, AND THRUST TAILORING CHARACTERISTICS

SIGNIFICANCE:

O WILL ENABLE ALTERNATIVE OPTIONS TO THE SOLID ROCKET BOOSTERS FOR FUTURE SPACE SHUTTLE AND OTHER LAUNCH VEHICLE APPLICATIONS THAT OFFER SAFE-ABORT AND INCREASED PAYLOAD CAPABILITY

PRESSURE-FED LIQUIDS - TECHNOLOGY ISSUES

CSTI BOOSTER PROPULSION PROGRAM CONTENT

- o PRESSURE-FED LIQUIDS
- ANALYTICAL MODELS
 - Low Pressure, Large Scale Combustors
 - Tank Pressurization
- LABORATORY, SMALL SCALE TESTING FOR CODE VALIDATION
- LARGE SCALE COMPONENT TESTING FOR DESIGN METHODOLOGY VERIFICATION

o HYBRIDS

- ANALYTICAL MODELS
 - Combustion Processes
 - Propellant Feed System
- LABORATORY, SMALL SCALE TESTING FOR CODE VALIDATION
- SUBSCALE MOTOR TESTING FOR DESIGN METHODOLOGY VERIFICATION

HYBRIDS - TECHNOLOGY ISSUES

CSTI BOOSTER PROPULSION MAJOR DELIVERABLES

o VALIDATED ANALYTICAL CODES:

- Low to Moderate Pressure, Bipropellant Combustion Processes
- Hybrid Combustion Processes
- High and Low Mixture Ratio Combustion for Tank Pressurization
- In-Tank Condensible Predictions

o ADVANCED DESIGN METHODOLOGY FOR:

- Pressure-Fed Combustor Design with High Performance, Stable Combustion, Minimum Pressure Drop Cooling, and Minimum Weight Ablative
- Hybrid Solid Fuel Grain Design, Oxidizer Injection and Ignition Systems
- High and Low Mixture Ratio Combustors
- High and Low Mixture Ratio Ignition Systems